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Abstract

Ru,(CO),,/1,10-phenanthroline shows excellent catalytic activity for hydroformylation of a-olefins. For example,
propylene was hydroformylated under 80 atm of syngas (CO:H, = 1:1) at 120-130°C in an amide solvent to give
C ,-aldehydes in high yield (65-93%) with high linearity (n-selectivity = 95%). In the case of 1-octene, corresponding
C,-aldehydes were obtained in moderate yields (49-55%) with high linearity (n-selectivity > 95%). In the reaction of

ethylene, propionaldehyde was obtained in high yield.
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1. Introduction

Ruthenium complex-catalyzed carbonylation
reactions have attracted much attention this past
decade. For example, Ru,(CO) ,-catalyzed car-
bonylation of pyridine in the presence of olefin,
by activation of the ortho C—H bond of pyridine
[1], Ru,(CO), ,-catalyzed hydroamidation of
olefins [2], Ru,(CO) ,-catalyzed double car-
bonylation of 1,6-diynes [3] and
RuCl1,(PPh,),/K,CO,-catalyzed oxidative cy-
clocarbonylation of allylic alcohols [4] have been
reported. Recently we reported the efficient
Ru,(CO),,/1,10-phenanthroline-catalyzed car-
bonylation of allylic compounds [5].

The oxo process is one of the most important
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processes in chemical industry. Hydroformyla-
tion of olefin has been industrially performed
since the 1940’s and homogeneous cobalt and
rhodium catalysts were employed in these pro-
cesses. Cobalt precursors require severe reaction
conditions, and n-selectivity (n-aldehyde /total
aldehydes) is low (< 70%); rhodium ones are
very expensive and a large excess (about 100
equiv.) of phosphine is required to achieve high
linearity. Thus, studies on novel catalyst sys-
tems with higher catalytic efficiency are of in-
terest.

On the other hand, ruthenium complex-cata-
lyzed hydroformylation has been studied [6—43].
Suiss-Fink et al. reported that the hydroformyla-
tion of propylene catalyzed by a cluster anion
Et,N*[HRu;(CO),;]~ gave n-butyraldehyde
and isobutyraldehyde in 60 and 3% yields, re-
spectively [21]. Knifton achieved high n-selec-
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tivity using ruthenium catalysts in fused Bu ,PBr
[29]. Tanaka et al. reported that
PPN*[HRu(CO),]~ or PPN*[HRu,(CO),]”
gave high n-selectivity on hydroformylation of
1-pentene under high pressure of syngas (300
atm) [34]. We now report a novel, versatile and
highly efficient catalytic system,
Ru,(CO),,/1,10-phenanthroline in amide sol-
vent, for hydroformylation of a-olefins.

2. Results and discussion
2.1. Hydroformylation of propylene

Propylene was hydroformylated under 80 atm
of syngas (CO:H, = 1:1) at 120°C in the pres-
ence of a catalytic amount of 1,10-phenanthro-
line and Ru,(CO),, in amide solvent to give
C,-aldehydes in high yield with high n-selectiv-
ity (eq. 1).

Ru3(CO)y \’/
1,10-phenanthroline, amide
CHO +
» 80 atm (CO:Hp=1:1) ' CHO

120-130°C,20 h

(D

The effects of solvents were examined and
results are summarized in Table 1.

Table 1

In toluene without 1,10-phenanthroline (run
2), the total yields of C,-aldehydes were fairly
good (69%) but the linearity was moderate
(75%). In the gas phase, propane was formed in
13% yield, and unreacted propylene was not
detected. In 1,4-dioxane without 1,10-
phenanthroline (run 3), hydrogenation of propy-
lene proceeded, and total yields of C ,-aldehydes
were low. N,N-Dimethylacetamide in the ab-
sence of 1,10-phenanthroline (run 1) was not
efficient. When 1,10-phenanthroline was added
as a ligand in amide solvents (runs 4, 7-10),
hydroformylation of propylene proceeded effec-
tively with high n-selectivity, and propane was
obtained in ca. 1% yield. The effects of ligands
were examined and the results are summarized
in Table 2.

When pyridine was used in place of 1,10-
phenanthroline, the C,-aldehydes were obtained
in high yields with lower n-selectivity. 2,2'-Bi-
pyridyl was less effective. In the case of
Me,N(CH,),NMe, (n = 2-4, 6), the longer the
methylene chain, the greater was the total yield
and the higher the linearity, however, C,-al-
cohols formed as by-products. Triphenylphos-
phine completely suppressed the reaction. Thus
the combination of 1,10-phenanthroline with
amide solvents was essential to proceed hydro-

Effects of solvents on ruthenium-catalyzed hydroformylation of propylene

Run Solvent Ligand Total yield b n-Selectivity ©
(%) (%)
1 CH,CONMe, - 25 84
2 toluene - 69 75
3 1,4-dioxane - 35 75
4 CH,CONMe, 1,10-phen, ¢ 73 95
5 toluene 1,10-phen. 0 -
6 1,4-dioxane 1,10-phen. 15 76
7 HCONMe, 1,10-phen. 65 95
8 cyclo-(CH,CH,CH,CON)Me 1,10-phen. 84 95
9 cyclo-(CH,CH,NMeCON)Me 1,10-phen. 80 95
10° CH,CONMe, 1,10-phen. 93 95

? Ru4(CO),, 0.11 mmol, propylene 40 mmol, solvent 10 ml, (1,10-phenanthroline 1.33 mmol) CO 40 atm, H, 40 atm, 120°C, 20 h.

® GLC yields.

¢ n-Selectivity = n-butyraldehyde /C ,-aldehydes.
d 1,10-phen. is 1,10-phenanthroline.

° At 130°C.
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Table 2

Effects of ligands on ruthenium-catalyzed hydroformylation of
propylene *

Run  Ligand Total yield®  n-Selectivity ©
(%) (%)
1 - 25 84
4 1.10-phenanthroline 73 95
11 2.9-dimethyl-1,10- 76 92
phenanthroline
12 Me,N(CH,),NMe, 3195
13 Me,N(CH,);NMe, 339
14 Me,N(CH,),NMe, 57 96
15 Me, N(CH, ) NMe, 62 96
16 2.2'-bipyridyl 24 93
17 PPh, 0o -
18 pyridine 79 91
104 1.10-phenanthroline 93 95

* Ru;(CO);, 0.11 mmol, propylene 40 mmol, N,N-dimethyl-
acetamide 10 ml, bidentate ligand 1.33 mmol or monodendate
ligand 2.66 mmol, CO 40 atm, H, 40 atm, 120°C, 20 h.

P GLC yields.

¢ n-Selectivity = n-butyraldehyde /C,-aldehydes.

¢ AL 130°C.

formylation of propylene effectively and to sup-
press the hydrogenation of propylene to propane.

Effects of the molar ratio of 1,10-
phenanthroline to Ru;(CO),, on the hydro-
formylation of propylene is shown in Fig. 1. In

80
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~ 40+
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;.% n-Selectivity = 95 %
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(o)
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1,10-Phenanthroline / Ru atom

Fig. 1. Effect of molar ratio of 1,10-phenanthroline /Ru3(CO),,
on hydroformylation of propylene. Yield of (a) n-butyraldehyde
and (b) isobutyraldehyde. Reaction conditions; propylene (40
mmol), Ru;(CO),, (0.11 mmol), N, N-dimethylacetamide (10 ml),
under CO 40 atm, H, 40 atm at 120°C for 20 h.
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Fig. 2. Effect of temperature on hydroformylation of propyliene.
Yield of (a) n-butyraldehyde and (b) isobutyraldehyde. Reaction
conditions; propylene (40 mmol), Ru;(CO),, (0.11 mmol), 1,10-
phenanthroline (1.33 mmol), N,N-dimethylacetamide (10 ml),
under CO 40 atm, H, 40 atm for 20 h.

the reaction under 80 atm (CO:H, = 1:1) at
120°C, addition of a 4-fold amount of 1,10-
phenanthroline to that of Ru atom gave the best
result. The n-selectivity was almost constant
(95%) in the range of 1,10-phenanthroline /Ru
=2to 8.
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Fig. 3. Effect of total pressure on hydroformylation of propylene.
Yield of (a) n-butyraldehyde and (b) isobutyraldehyde. Reaction
conditions; propylene (40 mmol), Ru;(CO),, (0.11 mmol), 1,10-
phenanthroline (1.33 mmol), N,N-dimethylacetamide (10 ml),
CO:H, = 1:1 at 120°C for 20 h.



222 T. Mitsudo et al. / Journal of Molecular Catalysis A: Chemical 109 (1996) 219-225

80
| )
® ®
60 (a)
n-Selectivity = 93-95 %
®
3 0
2
-
20 4
(b)
P O O
- — o
0 T T T T T
30 40 50 60 70 80 90

CO pressure / atm

Fig. 4. Effect of CO pressure on hydroformylation of propylene.
Yield of (a) n-butyraldehyde and (b) isobutyraldehyde. Reaction
conditions; propylene (40 mmol), Ru;(CO),, (0.11 mmol), 1,10-
phenanthroline (1.33 mmol), N,N-dimethylacetamide (10 ml),
under H, 40 atm at 120°C for 20 h.

Effects of the reaction temperature on the
hydroformylation of propylene is shown in Fig.
2. With the increase of the temperature, the total
yields of C,-aldehydes increased; the maximum
yield was 93% (n-selectivity = 95%) at 130°C.
Further increase of the reaction temperature
caused a decrease of the total yield of the
aldehydes because of the progress of aldol con-
densation.

Effects of the total pressure (CO:H, = 1:1)
on the hydroformylation of propylene is shown
in Fig. 3. The total yields of C,-aldehydes
slightly increased (from 72 to 80%) in the range
of 80-120 atm (CO:H, = 1:1).

Effects of CO pressure on the hydroformyla-
tion of propylene is shown in Fig. 4. When Py
was kept at 40 atm, the total yields and n-selec-
tivity of C-aldehydes were almost constant in
the range of P., = 40-80 atm. The tendency of
these effects of CO pressures is somewhat dif-
ferent from that reported; usually the yield of
aldehyde decreased with the increase of P,
[24]. The total yield of aldehydes and n-selectiv-
ity in our system, however, were higher than
those reported [9,17,24,29].

Effects of the H, pressure on the hydro-
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Fig. 5. Effect of H, pressure on hydroformylation of propylene.
Yield of (a) n-butyraldehyde and (b) isobutyraldehyde. Reaction
conditions; propylene (40 mmol), Ru,(CO);, (0.11 mmol), 1,10-
phenanthroline (1.33 mmol), N,N-dimethylacetamide (10 ml),
under CO 40 atm at 120°C for 20 h,

formylation of propylene is shown in Fig. 5.
When P, was kept at 40 atm, the total yields
and n-selectivity of the aldehydes were almost
constant in the range of Py = 30-60 atm. At
PHz = 80 atm, the yield of aldehydes decreased.

Time dependence of the hydroformylation of
propylene is shown in Fig. 6. Laine reported
that in the early stage of the hydroformylation
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Fig. 6. Time dependence on hydroformylation of propylene. Yield
of (a) n-butyraldehyde and (b) isobutyraldehyde. Reaction condi-
tions; propylene (40 mmol), Ru;(CO),, (0.11 mmol), 1,10-
phenanthroline (1.33 mmol), N,N-dimethylacetamide (10 mi),
under CO 40 atm, H, 40 atm at 130°C.
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catalyzed by Ru,(CO),, or H,Ru,(CO),, under
water—gas shift reaction conditions, n-selectiv-
ity was very high (> 97%), then the n-selectiv-
ity decreased rapidly with increase of olefin
conversion [19]. In our system, this decrease of
the n-selectivity was not observed.

2.2. Hvdroformylation of 1-octene

1-Octene was hydroformylated to Cg-al-
dehydes in moderate yields with high n-selectiv-
ity in the presence of a catalytic amount of
Ru,(CO),,/1,10-phenanthroline (eq. 2).

Ru3(CO),2

1,10-phenanthroline, DMF
IV VYN

100 atm (CO:Hy=1:1)
120 °C

After the reaction was completed, 2-octene
and 3-octene were obtained in 26% and 7%
yields, respectively. Results are shown in Table
3.

When 2-octene was employed under the same
reaction conditions, C,-aldehydes were obtained
in 20% yield. In case of 3-octene, no Cg-al-
dehyde was formed. When the 1-octene was
treated for 50 h under the same reaction condi-
tions, the yields of Cg-aldehydes increased
slightly, and most of the octenes recovered were
3-octene. Thus, the rate of hydroformylation of
I-octene and that of isomerization of the olefins,
determine the distribution of the products.

2.3. Hydroformylation of ethylene

Ethylene was hydroformylated under 100 atm
of syngas (CO:H, = 1:1) at 120°C in the pres-
ence of a catalytic amount of 1,10-phenanthro-
line and Ru,(CO) , in N, N-dimethylformamide
to give propionaldehyde (eq. 3). Results are
shown in Table 4.

RUs(CO)z (3)
. 1,10-phenanthroline, DMF —

- 100 atm (CO:H,=1:1) CHO

110°C

The yield of propionaldehyde obtained was
shown by TON [propionaldehyde (mmol) / molar
amount of Ru,(CO),,] and TOF [TON /time
(h)], because the amount of ethylene introduced
to the 50 ml autoclave (10 atm) could not be
determined exactly. After 3 h, propionaldehyde
was obtained in TON = 227 with TOF of 76.
The reaction was completed in 20 h (TON =
461).

2.4. IR spectrum of the reaction solution

After the reaction of run 4 was completed,
the IR spectrum of the solution at room temper-

NN cHO octane
+ 1-octene
+ 2
/\/\/\( 2-octene
CHO 3-octene

ature under 1 atm of Ar, showed four absorp-
tions at 2074(vw), 2016(vs), 1989(s), 1952(m)
cm ', These absorptions are similar to those of
Et,N*[HRu,(CO),,]1” [44]. The IR spectrum of
the solution taken under 80 atm of syngas
(CO:H, = 1:1) at 120°C, showed in addition to
these four absorptions, another absorption of
1988(vs) cm ™', Taking the effect of molar ratio
of 1,10-phenanthroline /Ru,(CO),, into consid-
eration, this absorption at 1988 cm ™' would be
due to a catalytically active species in which
1,10-phenanthroline coordinates to the Ru atom.

3. Experimental
3.1. General methods

The reagents employed in this study were
commercial materials and were used without
purification except for solvents and 1-octene
which were distilled before use. The GLC anal-
yses of the solutions were performed on a Shi-
madzu GC-14A gas chromatograph with
columns (3.0 mm id.X 2.6 m) packed with
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Table 3
Ruthenium-catalyzed hydroformylation of octenes *
Run Octene Total yield of n-Selectivity ° 1-octene /2-octene /
aldehydes ° (%) 3-octene /octane °
(%) (in %)
19 1-octene 49 97 trace /26 /7 /trace
20 ¢ 1-octene 52 97 trace /1,/23/1'
21 2-octene 20 89 trace /58 /24 /trace
22 3-octene trace - trace /trace /100 /trace
23°¢ 1-octene 55 95 trace /21 /4/3

2 Ru,4(CO);;, 0.11 mmol, octene 40 mmol, DMF 5.0 ml, 1,10-phenanthroline 1.33 mmol, CO 50 atm, H, 50 atm, 120°C, 20 h.

® GLC yields.

¢ n-Selectivity = n-butyraldehyde /C ,-aldehydes.

¢ For 50 h.

® N, N-dimethylacetamide was used in place of DMF.

OV-17 (2% Chromosorb WAW DMCS, 60-80
mesh). The GLC analyses of the gas phase were
performed on a Shimadzu GC-4A gas chro-
matograph with columns (2.6 mm i.d.X 3 m)
packed with Porapak-Q (80-100 mesh). IR
spectra were obtained on a Shimadzu FTIR-8100
spectrometer.

3.2. Ruthenium-catalyzed hydroformylation of
propylene

In a 50 ml stainless autoclave were placed
Ru,(CO),, (0.068 g, 0.11 mmol), 1,10-
phenanthroline (0.24 g, 1.33 mmol), and N,N-
dimethylacetamide (10 ml). Then propylene (896
ml at 0°C, 40 mmol) was introduced into a 50
ml stainless autoclave in dry ice—methanol
(—78°C). After CO (40 atm) and H, (40 atm)
were introduced at 25°C, the mixture was mag-
netically stirred at 130°C for 20 h. Gas phase
was stored in a polyethylene gas bag and ana-
lyzed by GLC. Liquid phase was analyzed by

Table 4

Ruthenium-catalyzed hydroformylation of ethylene *

Run Time TON® TOF
0y (h"°

24 3 227 76

25 10 404 40

36 20 461 23

2 Ru;(CO),, 0.05 mmol, ethylene 10 atm, DMF 10.0 ml, 1,10-
phenanthroline 0.66 mmol, CO 50 atm, H, 50 atm, 110°C.

® GLC yields. TON = propionaldehyde /Ru,(CO),,, TOF =
TON/h.

GLC. n-Butyraldehyde and isobutyraldehyde
were obtained in 88% and 5% respectively.

3.3. Ruthenium-catalyzed hydroformylation of
1-octene

In a 50 ml stainless autoclave were placed
Ru,(CO),, (0.068 g, 0.11 mmol), 1,10-
phenanthroline (0.24 g, 1.33 mmol), DMF (5.0
ml), and 1-octene (10 mmol). After CO (50
atm) and H, (50 atm) were introduced at 25°C,
the mixture was magnetically stirred at 120°C
for 50 h. Nonanal and 2-methyloctanal were
obtained in 51% and 1% respectively.

3.4. Ruthenium-catalyzed hydroformylation of
ethylene

In a 50 ml stainless autoclave were placed
Ru,(CO),, (0.034 g, 0.055 mmol), 1,10-
phenanthroline (0.12 g, 0.66 mmol) and DMF
(10.0 ml). After ethylene (10 atm), CO (50 atm)
and H, (50 atm) were introduced at 25°C, the
mixture was magnetically stirred at 110°C for
20 h. TON of propionaldehyde was 461.
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